
Jurgen A. Doornik, David F. Hendry
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Chapter 1

XlModeler ModelTable

The functionality of XlModeler is available though its ribbon menu:

Using XlModeler consists of three steps:
1. Create the ModelTable,
2. Build a model,
3. Test the model.
After a model has been built successfully, the evaluation icons and dropdown menu
come available:

To start using XlModeler, it is necessary to create a ModelTable. This defines the
variables that can be used to build a model. The ModelTable can be saved with the
workbook, so does not need to be redone everytime.
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2 Chapter 1 XlModeler ModelTable

A simple artificial data set, data.xlsx is included with XlModeler, and installed
in your user folder. We shall use this to illustrate the process.

Open the data.xlsx workbook. In this case we wish to add the entire datasheet to
the ModelTable. There are two easy ways to do this:

1. Select and right click,
2. Use the dialog, then select and add.

1.1 ModelTable from selection

The data set looks like this:

Select a cell and press Ctrl+A: this selects a rectangular part of the sheet around the
cell, all relevant data in this case. Alternatively, click in the top left cell to select the
entire sheet. Next, right click in the selection:

Select Add to XlModeler ModelTable. This creates a new worksheet, entitled
XlModeler.Table, which records the selection:
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Four variables were created from sheet 1. At the top we see that the ModelTable has
a fixed frequency of 4 (quarterly data), starting in 1953(1).1 Three additional variables
were automatically created: a constant (for the regression intercept), trend, and season-
als (provided the seasonal frequency is not unity). These are available for regression
models.

The sample information of the table is now determined, but further variables may
be added. The actual observations are collected from the sheet just before estimating a
model.

1.2 ModelTable dialog

The ModelTable dialog shows the current model, and allows variables to be renamed or
removed. A limited choice of transformations can also be made. When it is empty:

Now we can use the Add to ModelTable button to make a selection:

1With other data sets the seasonality may not be picked up correctly. In that case it can be
modified here.
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After which we have an updated dialog:

Pressing Done updates the XlModeler.Table sheet as shown above.

1.3 ModelTable transformations
The following transformations can be made directly in the ModelTable for a variable yt
with frequency S:
growth rate (%) S100∆ log(yt),
logarithm log(yt),
difference ∆yt,
year-on-year growth (%) 100∆S log(yt),
year-on-year difference ∆Syt = yt − yt−S .
Examples are given in §3.5 and Chapter 4.



Chapter 2

Regression Model

2.1 Introduction
Regression modelling normally consists of a cycle of two steps: build the model, evalu-
ate the estimated model, then reformulate as required. Tis process takes place using the
XlModeler toolbar in Excel. This tutorial will guide you through a simple model se-
quence based on the artificial data set. Hopefully you will agree at the end that XlMod-
eler combines sophistication with great simplicity.

Before we start, a brief digression on lags is called for. XlModeler names lagged
variables by appending an underscore and then the lag length. So CONS 1 is CONS one
period lagged. XlModeler uses this naming scheme to keep track of the lag length.
Note that lags are never created in the ModelTable. Instead, they are created through
the build process, allowing XlModeler to keep track of them.

2.2 Build a model, step 1: selection
Here we use the data.xlsx workbook and ModelTable as created in the previous chap-
ter. Then click on the Regression Model icon to initiate the Build dialog. The dialog
is grouped in three columns. On the right are the variables that can be added from the
ModelTable to the selection (i.e. the model that we are building). In the middle are but-
tons for moving between the ModelTable and the selection. For dynamic models, the

5



6 Chapter 2 Regression Model

lag length is also there. On the left is current selection, together with options to change
the status of variables in the selection:

The following actions can be taken in this dialog:
• Select variables in the ModelTabele
• Press >> to add selected variables to the model.
• Double click to add a ModelTable variable directly to the model.
• Remove a variable from the selection by pressing >> or double clicking.
• Empty the entire selection by pressing Clear>>.
• On the left-hand side, below the selection (the model formulation), is a drop-down

box to change the status of selected variables. It becomes active when a selection
variable is selected. For regression model there are three types:
Y the endogenous (dependent) variable; when starting from an empty model the

first is made endogenous by default (and a Constant is added too),
Z regressor, the default for all other variables,
A an additional instrument (for instrumental variables estimation, considered later),
U marks a variable as unrestricted, which will always force it in the model when

Autometrics is used. To change status, select one or more variables, then a status
type, and click on Set.

The first model to formulate is CONS on a Constant, CONS lagged, INC, INC
lagged and INFLAT, as shown below. There are various ways of formulating such a
model, including:
• Assuming that the lag selection is set from lag 0 to 1, double click on CONS, INC,

INFLAT respectively. Then select INFLAT 1 in the Model list box, and delete
(double click, or press the >> button).
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• After adding CONS and INC with lags 0 and 1, set the lag length to lag 0 to 0, and
add INFLAT.
This is the model we wish to build:

There are three ways to use the lag settings:
• None to add without lags;
• Lag to add only the specified lag;
• Lag 0 to in order to set a lag range.

Note that a Constant is automatically added, but can be deleted if the scale of the
variables lets a regression through the origin have meaning. Neither the Constant nor
the Trend will be offered for lagging (lagging these would create redundant variables).
Seasonals are not used here, but you could add them and delete them if you wish. In
that case, you’ll see that XlModeler automatically adds the correct number of seasonals
(three here as the data are quarterly). It takes the constant term into account; without the
constant, four seasonals would have been added. Seasonal is always unity in the first
period (first quarter in this case). So Seasonal 1 is one in the second quarter. Remove
the seasonals if you’ve just added them.

2.3 Build a model, step 2: settings
When the variables have been selected, press Next to move to the Model Settings

dialog, shown on the next page. For regression models this dialog deals mainly with
Autometrics settings. Autometrics is introduced in the next chapter, so press Next

again.
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2.4 Build a model, step 3: estimation

The next step is the the Estimate dialog where the sample period can be set.

The sample period can be adjusted by dropping observations at the start or at the
end. Holding back observations at the end allows you to retain some data for static
forecasting. Drop eight observations at the end:

2.5 Regression model output

Pressing Next again completes the build process by estimating the model. Output ap-
pears in a panel in a new sheet, named XlModeler.Out:
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2.5.1 Equation estimates

The estimated equation has the form:

yt = x′tβ + εt, t = 1, . . . , T,

where xt contains a ‘1’ for the intercept, yt−1 for the lagged dependent variable, as
well as the other regressors. Assumptions about the error term are that it has mean 0
and variance which is constant over time:

E [εt] = 0, V [εt] = E [εt − E [εt]]
2

= E
[
ε2t
]

= σ2.

We can write the estimated autoregressive-distributed lag (ADL) model in more detail
as:

CONSt = a1CONSt−1 + c+ b0INCt + b1INCt−1 + γINFLATt + εt. (2.1)

The equation estimation results are written to the XlModeler.Out window. The
sample period was automatically adjusted for the lags created on CONS and INC. We
assume that you have the default options setting, which generates the output as shown.
Section ?? discusses further options.

The reported results include coefficient estimates; standard errors; t-values; the
squared partial correlation of every regressor with the dependent variable; the squared
multiple correlation coefficient (denoted R2); an F-test on R2 equalling zero; the equa-
tion standard error (σ); the Residual Sum of Squares (RSS). In more detail:
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Coefficient Thus, the regression coefficients simply show the estimated values of
a1, c, b0, b1, γ in (2.1) above. Their interpretation is that a unit increase in INC is
associated with a contemporaneous 0.5 unit increase in CONS, but reduced to 0.2
after one more quarter. Importantly, this ignores the lag of CONS, so the impact is
really on (CONS−0.8CONS 1).

Std.Error Next, the standard errors (SEs) of the coefficients reflect the best estimate
of the variability likely to occur in repeated random sampling from the same popu-
lation: the coefficient±2SE provides a 95% confidence interval. When that interval
does not include zero, the coefficient is often called ‘significant’ (at the 5% level).
The number 2 derives from the assumption that β̂ has a student-t distribution with
T−k = 150−5 = 145 degrees of freedom. This, in turn, we know to be quite close
to a standard normal distribution, and: P (|Z| > 2) ≈ 95% where Z ∼ N (0, 1).

t-value The t-value of ĉ is the ratio of the estimated coefficient to its standard error:

tc =
ĉ

SE (ĉ)
,

where the latter is obtained from the appripriate diagonal element of the full 5 × 5

variance matrix of the estimated coefficients. This t-value can be used to test the hy-
pothesis that c is zero (expressed as H0 : c = 0). Under the current assumptions we
reject the hypothesis if tc > 2 or tc < −2 (again, using a 95% confidence interval,
in other words, a 5% significance level), so values with |t| > 2 are significant. This
assumes that the model is statistically well-specified, which we consider below.

t-prob The t-probability is the probability of getting a t-value at least as large as the
one found, assuming the t-distribution holds. So, an absolute t-value larger than or
equal to 2.12 has a probability of 3.55% in a t(145) distribution.

Part.R^2 The last statistic in the regression array is the partial r2. This is the squared
correlation between the relevant explanatory variable and the dependent variable
(often called regressor and regressand respectively), holding all other variables
fixed.

sigma The value of σ̂ is the standard deviation of the residuals, usually called the
equation standard error:

σ̂ =

√√√√ 1

T − k

n∑
t=1

ε̂2t ,

for n observations and k estimated parameters (regressors). Since the errors are
assumed to be drawn independently from the same distribution with mean zero and
constant variance σ, an approximate 95% confidence interval for any one error is
0 ± 2σ̂. That represents the likely interval from the fitted regression line of the
observations. When σ̂ = 1.08, the 95% interval is 4.3% of CONS – the government
would not thank you for a value much larger than that, as it knows that consumers’
expenditure rarely changes by more than 5% from one year to the next even without
your model.

RSS RSS is the acronym from residual sum of squares, namely
∑n
t=1 û

2
i , which can

be useful for hand calculations of tests between different equations for the same
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variable.
R^2 R2 measures the correlation between the actual values CONSi and the fitted values

ĈONSi, and is reported immediately below the regression output. When there are
several regressors, r2 and R2 differ.

F(.,.) Moving along the R2 row of output, the F-test is a test of R2 = 0. The next
item [0.000] is the probability that F = 0, and the ∗∗ denotes that the outcome is
significant at the 1% level or less.

Adj.R^2 This is the R2 adjusted for the number of estimated parameters. Like the R2,
this is not a very useful statistic.

no. of observations... Finally, the penultimate line gives T and k, while the last
line gives the mean and variance of the dependent variable. The variance corre-
sponds to the squared standard deviation:

CONS =
1

n

n∑
i=1

CONSi,

[se(CONS)]2 = σ̂2
y =

1

n− 1

n∑
i=1

(
CONSi − CONS

)2
.

2.5.2 Test summary: mis-specification tests

Test Summary is reported by default in the output and conducts a summary testing
sequence on the residuals for a range of null hypotheses of interest, including: auto-
correlation, autoregressive conditional heteroscedasticity (ARCH), the normality of the
distribution of the residuals, heteroscedasticity, and functional form mis-specification.

The null hypothesis is in each case the absence of the problem, so it is good to
see no significant statistics here. That contributes to our suggestion that the model is
statistically well-specified. A further assessment about parameter constancy will be
made below. However, if a significant mis-specification is found, it is not necessarily
the alternative hypothesis that is the cause of the problem.

Note how easy these tests are to calculate; and to see how informative they are about
the match of model and evidence, try computing them when any regressor is dropped
(why does dropping INC not lead to rejection?).

2.5.3 Analysis of 1-step forecast statistics

The forecast tests are a Chow test and a forecast Chi2 (8) which is an index of numerical
parameter constancy. For H forecasts, values > 2H imply poor ex ante accuracy. The
third test statistic reported is for the mean of the innovations being zero over the forecast
period. This involves the cumulative sum (CUSUM) of the 1-step ahead (recursive)
residuals, and has a t-distribution. This information is cut off from the screen capture
above, so given here:

1-step (ex post) forecast analysis 1990(4) - 1992(3)
Parameter constancy forecast tests:
Forecast Chi^2(8) = 9.3241 [0.3157]
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Chow F(8,145) = 1.1500 [0.3337]
CUSUM t(7) =-0.9719 [0.3635] (zero forecast innovation mean)

so these test do not detect any non-constancy for the forecast period.
Later, we will graph the outcomes, forecasts and the error bars for ±2 standard

errors of the 1-step forecasts.
To see the full results, use More/Further Output from the ribbon

and select Static (1-step) forecasts:

1-step forecasts for CONS (SE with parameter uncertainty)
Horizon Forecast SE Actual Error t-value
1990-4 862.235 1.097 861.484 -0.75153 -0.685
1991-1 862.136 1.090 864.444 2.3080 2.117
1991-2 863.237 1.085 862.750 -0.48749 -0.449
1991-3 860.146 1.091 859.413 -0.73240 -0.671
1991-4 862.243 1.106 860.480 -1.7626 -1.594
1992-1 860.796 1.092 860.002 -0.79344 -0.727
1992-2 856.477 1.113 855.908 -0.56831 -0.511
1992-3 856.995 1.089 856.731 -0.26431 -0.243

mean(Error) = -0.38151 RMSE = 1.1616
SD(Error) = 1.0972 MAPE = 0.11129

The RMSE and MAPE are discussed in §2.13.
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2.6 Graphics and Residual Graphics

The next major step is to do a graphical evaluation of the estimated model. There
are convenient buttons for a quick analysis, and additional options to create advanced
graphs.

First using the Graphics button. This creates two panels inside one graph, shown as
a screen capture here:

At the top are actual and fitted values, where the last observations are static forecasts
and outcomes. At the bottom are the residuals, with the last eight bars the forecast
errors.

This graph can be copied into a Word document.

Next is the Residual Graphics button, with the result shown in Figure 2.1.

2.7 Further graphical analysis

For a wider range of graphs, select the Graphic Analysis dialog from the More menu
(or press the toolbar button). Mark the first six items:
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r:CONS N(0,1) 
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ACF-r:CONS 

Figure 2.1 Residual Graphics of CONS model

The dialog lets you plot or cross-plot the actual and fitted values for the whole
sample, the residuals scaled by σ, so that values outside the range [−2,+2] suggest
outlier problems, the forecasts, and some graphical diagnostic information about the
residuals (their spectrum, correlogram, histogram, density and cumulative distribution).
The forecast period start is marked by a vertical line (see Figure 2.2). Notice the good
fit: the earlier high R2, and good Chow test are consistent with this. As before, any
graphs can be saved for later recall, editing and printing.

Accept the dialog, and the graphs appear in the XlModeler Graphics window, as in
Figure 2.2. There are two new graphs. The first is the correlogram, which extends the
idea behind the DW test to plot the correlations between successive lagged residuals
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Figure 2.2 Graphical evaluation of CONS model

(that is, the correlation of ε̂t with ε̂t−1, then with ε̂t−2, ε̂t−3 and so on up to ε̂t−12).
A random (independent) residual would have most such correlations close to zero: vi-
sually, the dependence between successive residuals is small. The second plots the
forecasts which we printed earlier, with the error bands changed to error fans.

2.8 Recursive estimation

We had already noted that the model appeared constant over the forecast period. Our
next topic is recursive estimation: the logic is simply to repeatedly drop the last obser-
vation and re-estimate to see if the results remain as expected. So the sample shrinks
T, T − 1, T − 2, ... until it gets too small for meaningful results. The main output will
be graphs of coefficients, σ̂ etc. over the changing sample size. This is a powerful
way to study parameter constancy (especially in its absence!). We sometimes refer to
recursively applied OLS as RLS.

Quick Recursive Graphics dialog is activated from the toolbar button. A more de-
tailed analysis is available from the Recursive Analysis menu):
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The right column has all the variables to be plotted in beta coefficients and beta
t-values. Select the statistics which are to be plotted: beta coefficients, beta t-values,
1-step residuals, and all three Chow tests. To reduce the number of graphs, we have
excluded the coefficient on INFLAT.

First, the graph of the coefficient of CONS 1 over the sample in Figure 2.3 shows
that after 1978, β̂t lies almost outside of the previous confidence interval which an
investigator pre-1974 would have calculated as the basis for forecasting. Other coef-
ficients are also non-constant. Further, the 1-step residuals show one outlier around
1987.

The 1-step residuals are
ũt = yt − x′tβ̂t

and they are plotted with ±2σ̂t shown on either side of zero. Thus ũt which are outside
of the error bars are either outliers or are associated with changes in σ̂. The full sample
residuals are:

ût = yt − x′tβ̂T

where β̂T is the full-sample OLS estimate. Graphic analysis plots these, scaled by the
full sample σ̂T .

Further summary graphs are the Chow tests, which are all scaled by their 1% critical
value (which becomes the line at unity). The 1-step Chow tests evaluate the one step
ahead forecasts, whereas the forecast (or Nup) tests evaluate the forecasts at each point
relative to the estimates at the start of the recursive plots. So the forecast Chow tests
have an expanding forecast horizon. Finally, in the Ndown, or breakpoint, Chow test
each point is the value of the Chow F-test for that date against the final period, here
1990(3), again scaled by its 1% critical value, so the forecast horizon N is decreasing
from left to right (hence the name Ndn tests). Figure 2.3 illustrates: the critical value
can be set at any desired probability level. The breakpoint Chow test shows a failure
around 1974 (the oil crisis ...).

Peruse other options as you wish: see how the standardized innovations often high-
light the outliers, or how the residual sums of squares confirm that a break occurred
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Figure 2.3 Recursive least squares graphical constancy statistics

in 1974. Any of these graphs can be edited and printed, or saved for later recall and
printing.

Next, select the Graphic analysis dialog and look at the full sample residuals:

ût = yt − x′tβ̂T

where β̂T is the usual full-sample OLS estimate. The full-sample estimates somewhat
smooth the outliers evident in the recursive figures, so now the largest is not much more
than 3.5 standard errors (partly because σ̂ increased by about 50% over the sample).

Note that recursive estimation can also be used to check the constancy of pre-tests
such as (Augmented) Dickey–Fuller tests for the order of integration of a time series,
and the recursive graphs may help to discriminate between genuine unit roots and au-
toregressive coefficients driven towards unity by a failure to model a regime shift.

2.9 Dynamic analysis

Next, activate Dynamic Analysis from the Test menu. Select Static long-run solution,
Lag structure analysis, and both Graph normalized weights and Graph cumulative

normalized weights, as shown:
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The dynamic analysis commences with the long-run solution. The solved long-run
model (or static solution) is calculated, together with the relevant standard errors as
follows. Write the dynamic equation as

a (L) yt = b (L)xt + εt,

where L is the lag operator so that Lxt = xt−1 and b(L) =
∑n
i=0 biL

i is a scalar
polynomial in L of order n, the longest lag length. Similarly, a(L) =

∑n
i=0 aiL

i, with
a0 = −1. With a(1) =

∑n
i=0 ai (that is, a(L) evaluated at L = 1), then if a(1) 6= 0

the long run is:

y =
b (1)

a (1)
x = Kx.

Under stationarity (or cointegration inducing a stationary linear relation), standard er-
rors for derived coefficients like K can be calculated from those of a (·) and b (·). Here
the long-run coefficients are well determined, and the null that they are all zero (exclud-
ing the constant term) is rejected.
Solved static long run equation for CONS

Coefficient Std.Error t-value t-prob
INC 1.10102 0.04534 24.3 0.000
INFLAT -5.19917 0.5558 -9.35 0.000
Constant -96.9979 40.68 -2.38 0.018
Long-run sigma = 5.63611

ECM = CONS + 96.9979 - 1.10102*INC + 5.19917*INFLAT;
WALD test: Chi^2(2) = 824.782 [0.0000] **

Next, the lag polynomials are analyzed, listing the individual coefficients a0, a1,
etc. (normalized so that a0 = −1), followed by their sum a(1), b(1), etc. and their
standard errors (remember that the standard error of the sum is not simply the sum of
the standard errors!):
Analysis of lag structure, coefficients:

Lag 0 Lag 1 Sum SE(Sum)
CONS -1 0.809 -0.191 0.0255
Constant -18.5 0 -18.5 8.73
INC 0.507 -0.296 0.21 0.0313
INFLAT -0.993 0 -0.993 0.0862
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This is followed by the F-tests of the joint significance of each variable’s lag poly-
nomial:

Tests on the significance of each variable
Variable F-test Value [ Prob] Unit-root t-test
CONS F(1,145) = 1008.5 [0.0000]** -7.4931**
Constant F(1,145) = 4.503 [0.0355]*
INC F(2,145) = 155.67 [0.0000]** 6.7226
INFLAT F(1,145) = 132.64 [0.0000]** -11.517

Tests on the significance of each lag
Lag 1 F(2,145) = 617.11 [0.0000]**

The hypothesis that a(1) = 0 can be rejected, with a XlModeler unit-root test value of
−7.49 (or −0.191/0.0255 from the previous output). The two stars mark significance,
suggesting cointegration between the variables in the model in levels (see Banerjee,
Dolado, Galbraith, and Hendry, 1993, or Johansen, 1995). Finally, tests on the sig-
nificance of each lag length are provided (here we deleted three columns with zeros):
The unit-root t-test (also called the XlModeler unit-root test) does not in fact have a t-
distribution, but the marked significance (∗ for 5%, ∗∗ for 1%, dependent variable only)
is based on the correct critical values, see Banerjee, Dolado, and Mestre (1998).

Since we also chose Lag weights, there are four new graphs in the XlModeler out-
put, as in Figure 2.4.
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Figure 2.4 Lag weights from CONS model
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2.10 Mis-specification tests

The test summary was already considered above. Tests can also be undertaken individ-
ually, or in different groups from that embodied in the test summary. From the Test

menu, select Test, which brings up the Test dialog:

Any or all available tests can be selected.
Tip The default values for the lag length of the AR and ARCH tests are based on the

data frequency and the sample size. Different lag lengths can be selected in the Test

dialog.
The output is rather more extensive than with summary tests. For example, the error
autocorrelation test (or AR test) and ARCH test produce:

Error autocorrelation coefficients in auxiliary regression:
Lag Coefficient Std.Error

1 0.054381 0.0909
2 0.071683 0.08987
3 -0.088316 0.08768
4 0.12258 0.08856
5 -0.051648 0.0885

RSS = 162.605 sigma = 1.16146

Testing for error autocorrelation from lags 1 to 5
Chi^2(5) = 4.7067 [0.4527] and F-form F(5,140) = 0.90705 [0.4784]

ARCH coefficients:
Lag Coefficient Std.Error

1 -0.065174 0.08399
2 -0.077844 0.08388
3 0.063463 0.08394
4 0.034848 0.08416

RSS = 345.559 sigma = 1.55997
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Testing for error ARCH from lags 1 to 4
ARCH 1-4 test: F(4,142) = 0.57719 [0.6796]

The DW -statistic (Durbin–Watson) is not printed by default. Instead, it is available
as the first entry on the Test dialog. But note that the assumptions needed to justify the
application of the DW test in economics are rarely satisfied.

Similarly, the normality test leads to the low-order moments being reported. The
density of the scaled residuals was shown in Figure 2.2 and revealed slight skewness
and somewhat fatter tails than the standard normal distribution. These mis-specification
test outcomes are satisfactory, consistent with the equation being a congruent model, so
we now consider some specification tests.

Note that you can use Test/Store to store residuals and fitted values from the regres-
sion in the workbook.

2.11 Specification tests

2.11.1 Exclusion, linear and general restrictions

First, we test whether a subset of the coefficients is zero. Choose Exclusion Restrictions

from the Test menu to test whether one or more coefficients are zero. At the dialog mark
INC and INC 1 and accept:

Before looking at the subset test result, we shall also do a linear restrictions test on
homogeneity of CONS with respect to INC. This time, select Linear Restrictions. To
complete, edit the restrictions as follows:

This formulates one restriction. The last element is the r vector, specifying what
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the restriction should add up to. In terms of (2.1) the restrictions are:

(1 0 1 1 0)


a1
c

b0
b1
γ

 = a1 + b0 + b1 = 1.

The results of the two tests are:
Test for excluding:
[0] = INC
[1] = INC_1
Subset F(2,145) = 155.67 [0.0000]**

Test for linear restrictions (Rb=r):
R matrix

CONS_1 INC INC_1 INFLAT Constant
1.0000 1.0000 1.0000 0.00000 0.00000

r vector
1.0000

LinRes F(1,145) = 4.0348 [0.0464]*

The output of the homogeneity test shows slight evidence of rejection of long-run
homogeneity if conventional critical values are used. The previous exclusion test re-
veals strong rejection of the null.

2.11.2 Test for common factors

Testing for common factors (COMFAC; is part of Dynamic analysis. It is also a speci-
fication test, motivating its inclusion here. When the dynamic equation is:

a (L) yt = b (L)xt + c (L) zt + εt,

COMFAC involves testing whether a(L) = a(1 − ρL) when b(L) = b(1 − ρL) and
c(L) = c(1 − ρL) so that (1 − ρL) is the factor of the lag polynomials in common.
COMFAC is discussed by Hendry and Mizon (1978).

To select COMFAC tests, the minimum lag length must be unity for all non-
redundant variables (variables that are redundant when lagged can occur without lags:
XlModeler notices the Constant and Trend if such terms occur). First, we must revise
the model to have one lag on INFLAT: return to build a Regression Model dialog, mark
INFLAT in the database, and add it to the model using a lag length of one. XlMod-
eler notices that current INFLAT is already in the model and doesn’t add it a second
time. Estimate over the previously selected sample (holding back 8 observations at the
end). Now select Dynamic analysis, and mark Test for common factors. Since the
lag polynomials are first-order, only the Wald test of one common-factor restriction is
presented following the roots of the lag polynomials. Here the restriction is rejected
so the dynamics do not have an autoregressive error representation, matching the very
different roots of the lag polynomials. The output is:
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COMFAC Wald test table, COMFAC F(2,144) = 51.3999 [0.0000] **
Order Cumulative tests Incremental tests
1 Chi^2(2) = 102.8 [0.0000]** Chi^2(2) = 102.8 [0.0000]**

The remainder of this chapter uses the model without lagged INFLAT, so re-estimate
the previous model (still with 8 static forecasts).

2.12 Further Output

Other output formats may prove more convenient for direct inclusion in final reports. To
make XlModeler write the output in equation format, for example, activate the Further

Output, (on the Test menu) and mark as shown:

Reporting only the equation format, this produces:

CONS = + 0.8091*CONS_1 + 0.5067*INC - 0.2965*INC_1 - 0.9926*INFLAT
(SE) (0.0255) (0.0288) (0.0356) (0.0862)

- 18.52
(8.73)

2.13 Forecasting

To end this chapter, we briefly compare dynamic and static forecasts for this model.
When we started, 8 observations were kept for static (1-step) forecasts, and these were
listed in §2.5.3 and graphed in Fig. 2.2d.

For a quick forecast press the Forecast button. For quarterly data, this will produce
3 years of dynamic (out-of-sample) forecasts. Because the model is conditional on INC



24 Chapter 2 Regression Model

and INFLAT, we cannot forecast any further when these run out. The forecasts are
graphed as well as written in detail in the XlModeler.Out sheet.

Dynamic (ex ante) forecasts for CONS (SE based on error variance only)
Horizon Forecast SE Actual Error t-value -2SE +2SE
1990(4) 862.235 1.076 861.484 -0.75153 -0.698 860.08 864.39
1991(1) 862.744 1.384 864.444 1.7000 1.228 859.98 865.51
1991(2) 861.862 1.553 862.750 0.88793 0.572 858.76 864.97
1991(3) 859.427 1.654 859.413 -0.013983 -0.008 856.12 862.74
1991(4) 862.254 1.717 860.480 -1.7739 -1.033 858.82 865.69
1992(1) 862.231 1.757 860.002 -2.2287 -1.268 858.72 865.75
1992(2) 858.280 1.783 855.908 -2.3715 -1.330 854.71 861.85
1992(3) 858.914 1.800 856.731 -2.1831 -1.213 855.31 862.51
1992(4) .NaN 1.811 .NaN .NaN .NaN .NaN .NaN
1993(1) .NaN 1.818 .NaN .NaN .NaN .NaN .NaN
1993(2) .NaN 1.822 .NaN .NaN .NaN .NaN .NaN
1993(3) .NaN 1.825 .NaN .NaN .NaN .NaN .NaN
mean(Error) = -0.84186 RMSE = 1.6862
SD(Error) = 1.4611 MAPE = 0.17320

Two summary statistics are reported in addition to the mean and standard deviation
of the error (over those that are available). The first is the Root Mean Square Error:

RMSE =

[
1

H

H∑
t=1

(yt − ft)2
]1/2

,

where the forecast horizon is H (8 here), yt the actual values, and ft the forecasts. The
second statistic is the Mean Absolute Percentage Error:

MAPE =
100

H

H∑
t=1

∣∣∣∣yt − ftyt

∣∣∣∣ .

Both are measures of forecast accuracy, see, e.g. Makridakis, Wheelwright, and Hynd-
man (1998, Ch. 2). Note that the MAPE can be infinity if any yt = 0, and is different
when the model is reformulated in differences. For more information see Clements and
Hendry (1998).

More options are available through Forecast Analysis:



2.14 Store Results 25

The one-step forecasts are also called ex-post forecasts: they require actual data of
all explanatory variables. To obtain the one-step forecast of CONS for 1990Q4, we
need to know the INC and INFLAT values for 1990Q4, and CONS from the previous
period. The next static forecast is again based on observed values for INC, INFLAT
and previous CONS. For pure forecasting purposes, we need to make dynamic forecasts,
usually requiring forecasts of all explanatory variables as well. One solution is to switch
to multiple-equation dynamic modelling, and to make INC and INFLAT endogenous in
a system such that all the variables are jointly forecast. That is beyond our current scope,
but we can do something comparable by at least using forecasted values of CONS when
available. In a simple autoregressive model yt = βyt−1 + εt, writing ŷt for forecasted
values, and assuming that T + 1 is the first forecast period:

Forecast horizon Static Forecast Dynamic Forecast
T + 1 ŷT+1 = β̂yT ŷT+1 = β̂yT
T + 2 ŷT+2 = β̂yT+1 ŷT+2 = β̂ŷT+1

T + 3 ŷT+3 = β̂yT+2 ŷT+3 = β̂ŷT+2

The first forecast is the same, but thereafter the forecasts differ.

2.14 Store Results

Note that you can use Store Results to store residuals, fitted values, and dynamic fore-
casts from the regression in the Excel workbook. This creates a new sheet XlMod-
eler.Store1 (and then Store2, Store3, ...):
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All the results of this chapter have been saved in data-1.xlsx, which is stored in
your user folder under XlModeler.

In the next chapter we consider strategies for model reduction and the automatic
facilities that XlModeler offers to the applied modeller. This is a major time-saving
device.



Chapter 3

Regression Model using Autometrics

3.1 Introduction

We now turn to what is perhaps the most useful part of regression models using XlMod-
eler and PcGive: automatic model selection with Autometrics. The objective is to let
the computer do a large part of what was done by hand in the previous chapter. XlMod-
eler will be able to find a model much quicker than we can. Of course, there is always
the option to do the model selection by hand — but it will be quite a challenge to beat
Autometrics.

Autometrics is a computer implementation of general-to-specific modelling, see
Doornik (2009), Doornik (2008). This follows on from Hendry and Krolzig (1999)
and Hoover and Perez (1999). There is now considerable Monte Carlo simulation ev-
idence that Gets performs well, selecting a model from an initial general specification
almost as often as the same criteria would when applied to the DGP (since test size leads
to false rejections, and non-unit power to false acceptances of the null even when the
analysis commences from the ‘truth’). A separate book, Hendry and Doornik (2014),
treats Autometrics and econometric model selection in general, including saturation-
based estimators such as impulse indicator saturation (IIS) and step indicator saturation
(SIS).

3.2 The problems of simple-to-general modelling

While the models of the previous chapter were mainly selected as illustrations of how
to use XlModeler, they highlighted four important issues:

27
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1. Powerful tests can reveal model inadequacies: it is not sensible to skip testing in the
hope that the model is valid.

2. A reject outcome on any test invalidates all earlier inferences, rendering useless the
time spent up to then – empirical research becomes highly inefficient if done that
way.

3. Once a problem is revealed by a test, how do you proceed? It is a dangerous non
sequitur to adopt the alternative hypothesis of the test which rejected: will you be
tempted to do this with residual autocorrelation, by assuming it is error autoregres-
sion?

4. What can be done if two or more statistics reject? Which has caused what? Do both
or only one need to be corrected? Or should third factors be sought?

As discussed by Hendry and Doornik (2014) and many others, the whole paradigm
of postulating a simple model and seeking to generalize it by searching for significant
variables (as embodied by stepwise regression) or test rejections is suspect, and in fact
makes sub-optimal use of XlModeler’s structure and functioning. Let us now switch to
its mode of general-to-specific modelling.

3.3 Formulating general models
We continue with data.xlsx in this chapter, starting with a clean modelling sheet. So
reopen the original data.xlsx if you want your model numbering to coincide with the
output presented in this chapter.

Turn to build a Regression Model to create a general specification. In substantive
research, the starting point should be based on previous empirical research evidence (to
test in due course that earlier findings are parsimoniously encompassed), economic (or
other relevant subject matter) theory, institutional knowledge, the data frequency – and
common sense. Here, we base the initial model on Davidson, Hendry, Srba, and Yeo
(1978) (denoted DHSY below) and begin by formulating an equation with CONS, INC,
INFLAT and Constant as its basic variables (you could add in OUTPUT too if you like,
but logic suggests it should be irrelevant given income).

Choose CONS, INC, and INFLAT with two lags each: please note that we are still
only illustrating – in practice, five lags would be a better initial lag length for quarterly
data, which we will do later using Autometrics. Do not retain any forecasts for this run
and select full sample OLS:
EQ( 1) Modelling CONS by OLS

The estimation sample is: 1953(3) - 1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.823338 0.08223 10.0 0.000 0.4038
CONS_2 -0.0315462 0.07151 -0.441 0.660 0.0013
INC 0.500117 0.02922 17.1 0.000 0.6643
INC_1 -0.295872 0.05568 -5.31 0.000 0.1602
INC_2 0.0255575 0.04471 0.572 0.568 0.0022
INFLAT -0.844115 0.2521 -3.35 0.001 0.0704
INFLAT_1 -0.0801516 0.4348 -0.184 0.854 0.0002
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INFLAT_2 -0.137750 0.2633 -0.523 0.602 0.0018
Constant U -20.7434 9.070 -2.29 0.024 0.0341

sigma 1.09027 RSS 175.92662
R^2 0.993857 F(8,148) = 2993 [0.000]**
Adj.R^2 0.993524 log-likelihood -231.708
no. of observations 157 no. of parameters 9
mean(CONS) 875.78 se(CONS) 13.5487

Scan the output, noting the coefficient estimates en route (e.g. four t-values are
small). Select the dynamic analysis to compute the static long-run solution:

Solved static long run equation for CONS
Coefficient Std.Error t-value t-prob

INC 1.10372 0.04237 26.0 0.000
INFLAT -5.10074 0.5484 -9.30 0.000
Constant -99.6282 38.05 -2.62 0.010
Long-run sigma = 5.23645

ECM = CONS - 1.10372*INC + 5.10074*INFLAT + 99.6282;
WALD test: Chi^2(2) = 981.088 [0.0000] **

Note the coefficient values (for example, INC is close to unity, INFLAT to −5) and
their small standard errors (so INC is apparently significantly different from unity).

3.4 Analyzing general models

The analysis of the lag structure is now more interesting: the unit-root t-tests show
that the three basic variables matter as long-run levels (less so if very long lags were
selected initially), which rejects a lack of cointegration. The F-tests on the (whole)
lag polynomials show that each also matters dynamically. However, lag length 2 is
irrelevant, whereas the first lag cannot be removed without a significant deterioration in
fit.

Analysis of lag structure, coefficients:
Lag 0 Lag 1 Lag 2 Sum SE(Sum)

CONS -1 0.823 -0.0315 -0.208 0.0322
Constant -20.7 0 0 -20.7 9.07
INC 0.5 -0.296 0.0256 0.23 0.038
INFLAT -0.844 -0.0802 -0.138 -1.06 0.132

Tests on the significance of each variable
Variable F-test Value [ Prob] Unit-root t-test
CONS F(2,148) = 306.93 [0.0000]** -6.4716**
INC F(3,148) = 102.74 [0.0000]** 6.0458
INFLAT F(3,148) = 32.254 [0.0000]** -8.039
Constant F(1,148) = 5.2302 [0.0236]*

Tests on the significance of each lag
Lag 2 F(3,148) = 0.17158 [0.9155]
Lag 1 F(3,148) = 38.745 [0.0000]**
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Tests on the significance of all lags up to 2
Lag 2 - 2 F(3,148) = 0.17158 [0.9155]
Lag 1 - 2 F(6,148) = 207.76 [0.0000]**

These four perspectives on the model highlight which reductions are consistent with
the data, although they do not tell you in what order to simplify. That issue can be
resolved in part by more experienced researchers (for one example see the discussion
in Hendry, 1987). For the moment, we will follow a sequential simplification route,
although generally it is better to transform to near orthogonality prior to simplification.

Can we trust the tests just viewed? The natural attack on that issue is to test all of
the congruency requirements listed in the Help: so test using the test summary. Many
of these tests will already have been conducted during earlier tutorials. The residual
plot looks normal, and no test rejects, although either of the autocorrelation or RESET
tests suggests a possible problem may be lurking in the background (the former option
gives significant negative autocorrelation possibly owing to overfitting – keep an eye
on how that evolves as simplification proceeds). COMFAC accepts that one common
factor can be extracted (matching the insignificant 2nd order lag, which would imply
that the common factor had a coefficient of zero) but strongly rejects extracting two.
The omitted variables1 test reveals that OUTPUT is indeed irrelevant. And the linear
restrictions test confirms that long-run homogeneity of CONS with respect to INC is
rejected at the 5% level. Tentatively, therefore, we accept the general or statistical
model as data-congruent, with no need for the second lag.

AR 1-5 test: F(5,143) = 2.1861 [0.0589]
ARCH 1-4 test: F(4,149) = 1.0123 [0.4030]
Normality test: Chi^2(2) = 1.6495 [0.4384]
Hetero test: F(16,140) = 0.74629 [0.7425]
Hetero-X test: F(44,112) = 0.80959 [0.7843]
RESET23 test: F(2,146) = 2.3183 [0.1021]

COMFAC Wald test table, COMFAC F(4,148) = 21.0177 [0.0000] **
Order Cumulative tests Incremental tests
2 Chi^2(2) = 0.39429 [0.8211] Chi^2(2) = 0.39429 [0.8211]
1 Chi^2(4) = 84.071 [0.0000]** Chi^2(2) = 83.676 [0.0000]**

Test for excluding:
[0] = OUTPUT
[1] = OUTPUT_1
Subset F(2,146) = 0.25212 [0.7775]

Test for linear restrictions (Rb=r):
R matrix CONS_1 CONS_2 INC INC_1 INC_2

1.0000 1.0000 1.0000 1.0000 1.0000
INFLAT INFLAT_1 INFLAT_2 Constant
0.00000 0.00000 0.00000 0.00000

r vector
1.0000

LinRes F(1,148) = 4.71427 [0.0315] *

1This result is obtained by adding OUTPUT and OUTPUT 1 to the model, and then testing
the exclusion restriction.
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3.5 Sequential simplification

For comparability with later models, transform the dependent variable to DCONS
= ∆CONS. This can be done directly in the ModelTable, by selecting DCONS, the
Difference transformation:

Then, after pressing Transform, the DCONS variable is created in the ModelTable:

Perhaps the quickest way to build the new model is to clear the existing model, start-
ing from scratch. You can also remove CONS from the existing model, add DCONS
and give it Y status, etc.). The model should look like this:
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Repeat estimation, keeping the sample starting point to 1953(3) to match the initial
model. When we first did this, we forgot to drop the first observation. If you also did
that, before continuing, you may wish to delete the erroneous output. Each output panel
is a ‘shape’, and can be deleted as follows.

Use Home/Find & Select to show the Selection Pane. The most recent output
shapes are at the top. Select the second, press delete - this removes the header. Now
select the top one and delete.
Using the correct sample we find:
EQ( 2) Modelling DCONS by OLS

The estimation sample is: 1953(3) - 1992(3)
Coefficient Std.Error t-value t-prob Part.R^2

CONS_1 -0.202149 0.02725 -7.42 0.000 0.2670
INC 0.500235 0.02857 17.5 0.000 0.6700
INC_1 -0.277320 0.03808 -7.28 0.000 0.2599
INFLAT -0.784047 0.1857 -4.22 0.000 0.1056
INFLAT_1 -0.262993 0.2057 -1.28 0.203 0.0107
Constant U -19.9390 8.584 -2.32 0.022 0.0345
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sigma 1.08126 RSS 176.538482
R^2 0.765599 F(5,151) = 98.64 [0.000]**
Adj.R^2 0.757838 log-likelihood -231.981
no. of observations 157 no. of parameters 6
mean(DCONS) -0.189886 se(DCONS) 2.19724

Eventhough the sigma and RSS have hardly changed from the previous model, R2

is substantially lower because of the change in the dependent variable from CONS to
DCONS (i.e. subtracting lagged CONS on both sides of the equation).

3.6 Autometrics

The starting point for Autometrics is a model formulated in the normal way. This initial
model is called the general unrestricted model or GUM. It should be a well-specified
model, able to capture the salient features of the dependent variable and pass all diag-
nostic tests. Following the GUM, the main decision is the significance level for reduc-
tion. This determines at what significance regressors are removed. It also specifies the
extent to which we accept a deterioration in information relative to the GUM.

3.7 Modelling CONS

In §3.3 we shied away from using 5 lags to keep the model simple. Now we can be more
ambitious, allowing for lags up to 5. Since the data is quarterly, we also add seasonals.
In the previous chapter it was noted that OUTPUT should not matter. To investigate
this, we add it to the model as well. Finally, we add a trend. Note that the Constant is
marked as U, which means it will always be forced into the model. If you want it to be
a candidate for removal, clear its status.

Accept, then mark Autometrics, which activates the remainder of the dialog:

• Target size

This is the significance level that is used for reduction. Change this to 0.05.
• Pre-search lag reduction

Pre-search lag reduction is switched on by default.
• Outlier and break detection

Keep this at None. Alternative options are: Large residuals to automatically create
dummies for large residuals in the GUM, and various forms of saturation estimation,
which creates dummies for all observations.

Keep the remaining settings as shown here:
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Press Next, and again in the next dialog which is unchanged from before (check
that you’re using the full sample). Automatic model selection is quick, but generates
more output.
• [0.1] Initial GUM

First the GUM is printed. The output below is not how XlModeler shows it. Instead
we have sorted the regressors by t-prob, i.e. by decreasing significance:
GUM( 1) Modelling CONS by OLS

The dataset is: .\OxMetrics8\data\data.in7
The estimation sample is: 1954(2) - 1992(3)

Coefficient Std.Error t-value t-prob Part.R^2
CONS_1 0.833937 0.08599 9.70 0.0000 0.4274
INC 0.511109 0.03237 15.8 0.0000 0.6643
INC_1 -0.312776 0.05848 -5.35 0.0000 0.1850
INFLAT -0.766260 0.3703 -2.07 0.0405 0.0329
INC_3 0.120765 0.06381 1.89 0.0607 0.0276
CONS_4 0.197144 0.1103 1.79 0.0762 0.0247
CONS_5 -0.132990 0.07766 -1.71 0.0893 0.0227
CONS_3 -0.150692 0.1090 -1.38 0.1693 0.0149
OUTPUT_5 -0.0542604 0.04381 -1.24 0.2178 0.0120
INFLAT_4 0.675374 0.5832 1.16 0.2490 0.0105
OUTPUT_3 0.0514746 0.05177 0.994 0.3220 0.0078
Constant U -20.7235 22.88 -0.906 0.3667 0.0065
Seasonal 0.234970 0.2676 0.878 0.3815 0.0061
INFLAT_2 -0.511191 0.6022 -0.849 0.3975 0.0057
INC_2 -0.0507675 0.06353 -0.799 0.4258 0.0050
Seasonal_1 0.213602 0.2768 0.772 0.4418 0.0047
OUTPUT_4 0.0398924 0.05253 0.759 0.4490 0.0046
Seasonal_2 0.190405 0.2738 0.696 0.4880 0.0038
INC_4 -0.0396864 0.06536 -0.607 0.5448 0.0029
INFLAT_3 -0.332742 0.5959 -0.558 0.5776 0.0025
OUTPUT_2 -0.0247968 0.05115 -0.485 0.6287 0.0019
CONS_2 0.0497580 0.1101 0.452 0.6522 0.0016
INFLAT_5 -0.0770788 0.3298 -0.234 0.8156 0.0004
OUTPUT -0.00695063 0.03279 -0.212 0.8324 0.0004
INFLAT_1 0.113980 0.5978 0.191 0.8491 0.0003



3.7 Modelling CONS 35

Trend -0.000643632 0.004692 -0.137 0.8911 0.0001
OUTPUT_1 -0.00637418 0.05040 -0.126 0.8996 0.0001
INC_5 -0.00320849 0.05006 -0.0641 0.9490 0.0000

sigma 1.08642 RSS 148.719356
R^2 0.994754 F(27,126) = 884.8 [0.000]**
Adj.R^2 0.993629 log-likelihood -215.83
no. of observations 154 no. of parameters 28
mean(CONS) 875.591 se(CONS) 13.6115

AR 1-5 test: F(5,121) = 0.66157 [0.6533]
ARCH 1-4 test: F(4,146) = 1.6523 [0.1643]
Normality test: Chi^2(2) = 2.3692 [0.3059]
Hetero test: F(51,102)= 0.97127 [0.5369]
Chow test: F(45,81) = 1.2000 [0.2354] for break after 1981(2)

The first four form the core model we have worked with so far. The remaining 24
appear to be insignificant at 5%, but some may well survive into the final model. The
GUM is followed by the output of the diagnostic tests that are used by Autometrics.

• Dimensions
Next is some information regarding the size of the problem:
---------- Autometrics: dimensions of initial GUM ----------
no. of observations 154 no. of parameters 28
no. free regressors (k1) 28 no. free components (k2) 0
no. of equations 1 no. diagnostic tests 5

• [0.2] Pre-search lag reduction
The first stage of the automatic model selection is the pre-search lag reduction:
[0.2] Presearch reduction of initial GUM

Starting closed lag reduction at 0.33365
Removing lags(#regressors): none

Starting common lag reduction at 0.33365
Removing lags(#regressors): 2-2(4)

Starting common lag reduction at 0.33365 (excluding lagged y’s)
Removing lags(#regressors): 5-5(3) 4-4(3)

Presearch reduction in opposite order

Starting common lag reduction at 0.33365 (excluding lagged y’s)
Removing lags(#regressors): 4-4(3) 2-2(3) 5-5(3)

Starting common lag reduction at 0.33365
Removing lags(#regressors): 2-2(1)

Starting closed lag reduction at 0.33365
Removing lags(#regressors): none

Encompassing test against initial GUM (iGUM) removes: none

Presearch reduction: 10 removed, LRF_iGUM(10) [0.8430]
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Presearch removed: CONS_2 INC_2 INC_4 INC_5 INFLAT_2
INFLAT_4 INFLAT_5 OUTPUT_2 OUTPUT_4 OUTPUT_5

The pre-search lag reduction is done in two sequences. Only lags that are insignif-
icant in both (at a reduced level) are removed from the initial GUM. All tests are
F-tests, derived from the likelihood-ratio (LR) test — they are the standard F-tests.
Lag 2, which has four variables (seasonals are not treated as lags), is the least signif-
icant with a p-value of 79%. In this case, both sequences remove exactly the same
regressors, so 10 terms are removed in the pre-search, leaving 18 coefficients.

• [0.3] Test for empty model
The first step after pre-search is to test for an empty model at reduced significance,
which is strongly rejected:
[0.3] Testing GUM 0: LRF(17) [0.0000] kept

• [1.0] Start of Autometrics tree search
– Searching from GUM 0 The first iteration of Autometrics finds just one candi-

date models (it is more common to find multiple candidate models - try it with
a free Constant to find two):
Searching from GUM 0 k= 17 loglik= -219.183
Found new terminal 1 k= 6 loglik= -222.374 SC= 3.1169

Searching for contrasting terminals in terminal paths

Encompassing test against GUM 0 removes: none

p-values in GUM 1 and saved terminal candidate model(s)
GUM 1 terminal 1

CONS_1 0.00000000 0.00000000
CONS_4 0.02115435 0.02115435
CONS_5 0.00183605 0.00183605
INC 0.00000000 0.00000000
INC_1 0.00000000 0.00000000
INFLAT 0.00000000 0.00000000
k 6 6
parameters 7 7
loglik -222.37 -222.37
AIC 2.9789 2.9789
HQ 3.0350 3.0350
SC 3.1169 3.1169

– Searching from GUM 1, termination
GUM 1 is the starting point for the next search. This does not produce any new
terminal candidates:
Searching from GUM 1 k=6 loglik=-222.374 LRF_GUM0(11) [0.8851]
Recalling terminal 1 k=6 loglik=-222.374 SC= 3.1169

Searching for contrasting terminals in terminal paths

• [2.0] Selection of final model from terminal candidates: terminal 1
Because there were no new models when searching from GUM 1, the table headed
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‘p-values in Final GUM and terminal model(s)’ is the same as that reported after
searching from GUM 0, except that now the column of terminal one is marked. The
selected model has the lowest Schwarz Criterion (SC), which is terminal 1 here.
Before printing the final model, the output includes the coefficients, diagnostic tests
and a summary of the search:
coefficients and diagnostic p-values in Final GUM and terminal model(s)

Final GUM terminal 1
CONS_1 0.80973 0.80973
CONS_4 0.11861 0.11861
CONS_5 -0.12922 -0.12922
INC 0.50414 0.50414
INC_1 -0.28567 -0.28567
INFLAT -1.0022 -1.0022
k 6 6
parameters 7 7
loglik -222.37 -222.37
sigma 1.0495 1.0495
AR(5) 0.80906 0.80906
ARCH(4) 0.30509 0.30509
Normality 0.60556 0.60556
Hetero 0.65103 0.65103
Chow(70%) 0.19159 0.19159

=======

p-values of diagnostic checks for model validity
Initial GUM cut-off Final GUM cut-off Final model

AR(5) 0.65329 0.01000 0.80906 0.01000 0.80906
ARCH(4) 0.16430 0.01000 0.30509 0.01000 0.30509
Normality 0.30587 0.01000 0.60556 0.01000 0.60556
Hetero 0.53688 0.01000 0.65103 0.01000 0.65103
Chow(70%) 0.23543 0.01000 0.19159 0.01000 0.19159

Summary of Autometrics search
initial search space 2^27 final search space 2^6
no. estimated models 29 no. terminal models 1
test form LR-F target size Standard:0.05
large residuals no presearch reduction lags
backtesting GUM0 tie-breaker SC
diagnostics p-value 0.01 search effort standard
time 0.02 Autometrics version 2.0

The final model, which differs from the one of the previous chapter, has lags four
and five of CONS (with almost opposite coefficients), as additional variables. Given 28
variables in the GUM, at 5% significance one might expect one or two to be retained
by chance; a 1% level would reduce that ‘spurious’ retention rate to about one variable
every three times that such a selection exercise was conducted. Any actions on the Test

menu now relate to this model. For example, testing that the coefficients on CONS 4
and CONS 5 sum to zero using Test/Linear Restrictions is accepted with a p-value of
63%. Therefore, the long-run is not greatly changed from that reported in §3.3:
Solved static long-run equation for CONS

Coefficient Std.Error t-value t-prob
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INC 1.08753 0.04200 25.9 0.0000
INFLAT -4.98868 0.5069 -9.84 0.0000
Constant -85.3400 37.66 -2.27 0.0249
Long-run sigma = 5.22436

3.8 DHSY revisited
The DHSY model (Davidson, Hendry, Srba, and Yeo, 1978) is an equilibrium-
correction model for the logarithm of consumption, ct, where the equilibrium correction
is the gap between consumption and income, yt, with an additional price term, ∆4pt.
The DHSY model is seasonal: it uses fourth differences (the data are quarterly), and the
equilibrium is towards the gap from a year ago. There is a dummy, Dbudget, for budget
effects in 1968: +1 in 1968(1) and −1 in 1968(2), and a dummy, DVAT, for the intro-
duction of VAT: +1 in 1973(1) and −1 in 1973(2). DHSY use DVt = Dbudget + DVAT

in their model.
The data set is provided as DHSY.xlsx with the ModelTable already constructed:

Here LC is ct, LY is yt and D4LPC is ∆4pt. This allows us to formulate their model.
Estimation is over the sample period 1959(2)–1975(4). Using Further Output/LaTeX

format:

D4LC = − 0.093
(0.012)

LC-LYt−4 + 0.48
(0.029)

D4LYt − 0.12
(0.023)

D4LPCt

− 0.23
(0.04)

DD4LYt − 0.31
(0.1)

DD4LPCt + 0.0065
(0.0022)

D4DVt

With standard errors in parentheses.
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To use Autometrics, formulate the GUM with LC as the dependent variable, and up
to 5 lags of LC, LY and D4LPC as explanatory variables. The constant is already there,
but its status needs to be changed from U to a normal regressor. Add the differenced
dummy D4DV without further lags, and finally add the seasonals. Estimation is over
the sample period 1959(2)–1975(4).

Autometrics at 2.5% with pre-search lag reduction finds three terminal models:
p-values in Final GUM and terminal model(s)

Final GUM terminal 1 terminal 2 terminal 3
LC_4 0.00000000 0.00000000 0.00000000 0.00000000
LY 0.00000000 0.00000000 0.00000000 0.00000000
LY_1 0.00000984 0.00001130 0.00003436 0.00000567
LY_4 0.04766878 0.00481955 . .
LY_5 0.00000844 0.00000006 0.00000027 0.00000000
D4LPC 0.00013293 0.00020981 0.00000000 0.00001474
D4LPC_1 0.03291580 0.01494571 . 0.00933580
D4DV 0.00163508 0.00201634 0.00034527 0.00027128
Seasonal 0.08409064 . 0.04147579 .
Seasonal_1 0.02567385 . 0.00071121 0.01432980
Seasonal_2 0.15804560 . 0.07652718 .
k 11 8 9 8
parameters 11 8 9 8
loglik 256.60 253.24 250.83 252.12
AIC -7.3312 -7.3205 -7.2189 -7.2872
HQ -7.1880 -7.2163 -7.1018 -7.1830
SC -6.9693 -7.0573 -6.9228 -7.0239

=======

These are all statistically valid reductions of the GUM. When there is a tie like this,
the final model is chosen by the Schwarz Criterion (SC). The selected model is very
similar to that found by Davidson, Hendry, Srba, and Yeo (1978) (after much less effort
than theirs!):

LC = 0.92
(0.028)

LCt−4 + 0.27
(0.038)

LYt + 0.19
(0.04)

LYt−1

− 0.14
(0.046)

LYt−4 − 0.25
(0.04)

LYt−5 − 0.38
(0.095)

D4LPCt

+ 0.25
(0.1)

D4LPCt−1 + 0.0069
(0.0021)

D4DVt

The results of this chapter have been saved in data-2.xlsx and DHSY.xlsx, both
stored in your user folder under XlModeler. This finishes our coverage of regression
models in XlModeler. XlModeler is based on PcGive, and Hendry and Doornik (2013)
provides a full documentation of the output of the program.

In the next chapter we turn to financial econometrics, considering volatility models.



Chapter 4

Volatility Model

4.1 Getting started

The data set for this chapter is the daily Nasdaq stock index (IXIC). The file
Nasdaq.xlsx is provided in your user folder under XlModeler\data. This data set
was downloaded from Yahoo! Finance, and, if you wish, you can follow along with a
newer sample.

The downloaded data consists of the Date, Open, High, Low, Close, Adj Close, and
Volume. This is what it looks like on our computer:

The sample runs from 3 January 2005 to 31 December 2018. There are no obser-
vations for weekends and holidays in which the market is closed. We shall use the
Adjusted close, which is price adjusted for both dividends and splits.

Two additional variables have been created in the spreadsheet: a Monday dummy
and a Friday dummy. If you download your own data set, this can be done as follows:
1. in cell H2 enter

=IF(WEEKDAY(A2)=2,1,0)

40
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2. Press Ctrl+Shift+End to extend the selection to the last cell and fill the column
with the formula (just scrolling down with so many observations will take forever).
Finally, give the column a name.

The formula for Friday is =IF(WEEKDAY(A2)=6,1,0).

The first step in using XlModeler is to create the ModelTable, as discussed in Chap-
ter 1. However, this has already been done in Nasdaq.xlsx:

The Constant and the Trend are automatically created by XlModeler, but not used
in volatility models.

The object of interest is the daily return (in %), which are defined as

yt = 100 [log(pt)− log(pt−1)] , (4.1)

where pt is the price series at time t. The returns are called the growth rate in the
ModelTable dialog, with transformation 100*dlog("Adj Close"). We renamed this
to ixic (in lowercase).

Whereas the ModelTable shown in §1.1 and used in previous chapters has a fixed
frequency, the current table has dates of type Calendar. This associates a date with every
observation.

4.2 Preliminary analysis
Before delving into a volatility model, we can use the regression model to do our pre-
liminary analysis. Regressing ixic on just a Constant shows:

EQ( 1) Modelling ixic by OLS
The estimation sample is: 2005-01-04 - 2018-12-31

Coefficient Std.Error t-value t-prob Part.R^2
Constant U 0.0319686 0.02167 1.48 0.1402 0.0006
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sigma 1.28603 RSS 5823.301
log-likelihood -5883
no. of observations 3522 no. of parameters 1
mean(ixic) 0.0319686 se(ixic) 1.28603

AR 1-2 test: F(2,3519) = 11.691 [0.0000]**
ARCH 1-1 test: F(1,3520) = 204.12 [0.0000]**
Normality test: Chi^2(2) = 2382.8 [0.0000]**

ixic Fitted 
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Figure 4.1 NASDAQ returns

Graphic analysis can show us the ‘actual and fitted’ with the latter just being the
intercept, Figure 4.1. The NASDAQ returns variable exhibits volatility clustering as
periods of low volatility mingle with periods of high volatility. This is a clear sign of
presence of ARCH effect in the series. We also see from the ARCH mis-specification
test that the absence of ARCH is rejected.

4.2.1 Nonnormality

Figure 4.2 shows that the unconditional distribution of the NASDAQ returns (the thicker
line) is not normally distributed: it is more peaked than the normal density with the same
mean and variance (this is the dashed line) and has fatter tails. The inset panels of the
left and right tail emphasize this. They also indicate that the left tail is somewhat fatter
than the right, so large negative returns seem a bit more likely than large positive ones.
The normality test also indicates the departure from normality of the NASDAQ returns.
We can look at this in more detail using More/Test and selecting Normality test:
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Normality test for residuals
Observations 3522
Mean 0.00000
Std.Devn. 1.2858
Skewness -0.28344
Excess Kurtosis 7.5342
Minimum -9.6197
Maximum 11.127
Median 0.055229
Madn 0.85131
Asymptotic test: Chi^2(2) = 8377.4 [0.0000]**
Normality test: Chi^2(2) = 2382.8 [0.0000]**

Recall that the skewness coefficient (SK) equals 0 for a symmetric distribution
while the kurtosis coefficient (KU ) equals 3 for the normal distribution. The excess
kurtosis equals KU − 3. Formally these moments are expressed as

SK =
E[(y − µ)3]

σ3
and KU =

E[(y − µ)4]

σ4

r:ixic N(s=1.29) 
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Figure 4.2 Distribution of NASDAQ returns

4.2.2 Autocorrelations

When the error term is not independent of previous errors, it is said to be autocorrelated.
Autocorrelation of order h is computed as follows

rh =
cov(yt, yt−h)

σy,tσy,t−h
.
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Plotting the sample autocorrelations against the lag gives a first visual impression of
the magnitude of the autocorrelation problem. This plot is called “autocorrelogram” or
ACF and it provides information about simple correlation coefficients. When the errors
are strongly time dependent, the autocorrelations tend to be fairly large even for large
values of h. We can use the Graphic Analysis to plot tha ACF of the residuals (which
are just the returns in this case), as well as of the squared returns.

 

Figure 4.3 Autocorrelations of NASDAQ returns

The top panel of Figure 4.3 suggests that the daily return series of the NASDAQ is
a short memory process (in the level) but that an AR(1) term might be needed in the
conditional mean equation.

We have previously seen from the visual inspection that the NASDAQ exhibits
volatility clustering as periods of low volatility alternate with periods of high volatility.
This is reflected in the strong autocorrelation of the squared returns, see the bottom
panel of Figure 4.3. The aim of a volatility model is to capture this deature of the data
— a normal regression model cannot do this.
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4.3 The ARCH model

Our starting point is a univariate time series yt. If Ωt−1 is the information set at time
t− 1, we can define its functional form as:

yt = E(yt|Ωt−1) + εt, (4.2)

whereE (.|.) denotes the conditional expectation operator and εt is the disturbance term
(or unpredictable part), with E (εt) = 0 and E (εtεs) = 0,∀ t 6= s.

In the regression models of the previous chapters we specified the expectation as
x′tδ, and assumed, for inference purposes, that the error term had an N [0, σ2] distribu-
tion. However, Figure 4.2 and also the ACF of squared residuals in Figure 4.3 shows
that this assumption of constant variance does not hold for the Nasdaq returns. This is
the case in general for financial time-series, which led to the development of ARCH-
style and stochastic volatility models.

4.3.1 The volatility equation

More than three decades ago, Engle (1982) introduced the Autoregressive Conditional
Heteroscedasticity (ARCH) model:

εt = ztσt zt ∼ i.i.d.N [0, 1] (4.3)

σ2
t = ω +

q∑
i=1

αiε
2
t−i. (4.4)

All volatility models offered by XlModeler are ARCH-type models of the form εt =

ztσt, but with many different options for the precise form of (4.4) and the distribution
of zt.

The ARCH model can describe volatility clustering. The conditional variance of
εt is an increasing function of the square of the shock that occurred at t − 1. Conse-
quently, if this was large in absolute value, σ2

t and thus εt is expected to be large (in
absolute value) as well. Note that, even if the conditional variance of an ARCH model
is time-varying, i.e. σ2

t = E(ε2t |Ωt−1), the unconditional variance of εt is constant and,
provided that ω > 0 and α1 + ...+ αq < 1, we have:

σ2 ≡ E[E(ε2t |Ωt−1)] =
ω

1−
∑q
i=1 αi

. (4.5)

When zt is normally distributed, E(z3t ) = 0 and E(z4t ) = 3. Consequently,
E(ε3t ) = 0 and the skewness of y is zero. The kurtosis coefficient for the ARCH(1)
process is 3(1− α2

1)/(1− 3α2
1) if α1 <

√
1/3 ≈ 0.577. In this case, the uncon-

ditional distribution has fat tails whenever α1 > 0. In most applications, the excess
kurtosis implied by the normal ARCH model is not enough to mimic the features of
observed financial data.
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Positivity Constraints The σ2
t terms must be positive for all t. Sufficient conditions

to ensure that the conditional variance in Equation (4.4) is positive are given by ω > 0

and αi ≥ 0.

Variance Targeting Variance targeting in the ARCH(1) model replaces ω by σ2(1−
α1). The unconditional variance σ2 can be estimated consistently by its sample coun-
terpart.

Explanatory Variables Explanatory variables can be added to the conditional vari-
ance (note the triple use of ω):

ωt = ω +

n2∑
i=1

ωixi,t. (4.6)

This invalidates the standard conditions for positive variance.
Variance targeting is also affected, and ω is now replaced by σ2 (1−

∑q
i=1 αi) −∑n2

i=1 ωix̄i, where x̄i is the sample average of variable xi,t (assuming the stationarity
of the n2 explanatory variables). In other words, the explanatory variables are centered.

4.3.2 The mean Equation

The mean of the volatility model may have regressors, as well as autoregressive (AR)
and/or moving average (MA) components:

Ψ (L) (yt − x′tδ) = Θ (L) εt, (4.7)

where L is the lag operator such that Lkyt = yt−k, Ψ (L) = 1 −
∑n
i=1 ψiL

i and
Θ (L) = 1 +

∑s
j=1 θjL

j .
Furthermore, long memory can be captured through a fractionally integrated ARMA

process:

Ψ (L) (1− L)
ζ

(yt − µt) = Θ (L) εt, (4.8)

where the operator (1− L)ζ accounts for the long memory of the process.
Another feature is the availability of ARCH ‘in-mean’ models, where the condi-

tional variance is an explanatory variable in the mean:

µt = µ+ ϑσkt , (4.9)

with k = 1 to include the conditional standard deviation and k = 2 for the conditional
variance. Such an ARCH-M model is often used in financial applications where the ex-
pected return on an asset is related to the expected asset risk. The estimated coefficient
of the expected risk is a measure of the risk-return tradeoff.
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4.3.3 Estimation

The evaluation of σ2
t in (4.4) depends on past (squared) residuals. These are not ob-

served before t = 1, and, to initialize the process, we use their sample mean.
Estimation of ARCH-type models is commonly done by maximum likelihood re-

quiring an additional assumption about the innovation process zt. The default is to use a
normal distribution, and Weiss (1986) and Bollerslev and Wooldridge (1992) show that
the quasi-maximum likelihood (QML) estimator is then consistent if the conditional
mean and the conditional variance are correctly specified. This estimator is, however,
inefficient with the degree of inefficiency increasing with the degree of departure from
normality (Engle and González-Rivera, 1991). It is, of course, efficient when normality
holds.

Other available distributions are the Student-t distribution, the Generalized Error
distribution (GED) and the skewed-Student distribution (Lambert and Laurent, 2000).

Likelihood maximization methods Three numerical methods are available to maxi-
mize the loglikelihood:
1. The quasi-Newton method of Broyden, Fletcher, Goldfarb and Shanno (BFGS).
2. A constraint optimization technique that uses the MaxSQPF algorithm. MaxSQPF

implements a sequential quadratic programming technique to maximize a non-linear
function subject to non-linear constraints, similar to Algorithm 18.7 in Nocedal and
Wright (1999). MaxSQPF is particularly useful to impose the stationarity and/or
positivity constraints like α1 ≥ 0 in the ARCH(1) model.

3. A simulated annealing algorithm for optimizing non-smooth functions with possible
multiple local maxima.
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4.4 Building an ARCH volatility model

First, we consider the autoregressive conditional heteroscedasticity (ARCH) model in-
troduced by Engle (1982). But we shall see that a generalization of this to GARCH is
more effective at capturing the volatility clustering of the NASDAQ returns series. This
section takes you through the steps needed to build and estimate an ARCH(1) volatility
model. The next section considers many aspects of this model in detail.

Estimating our first model for ixic is simple with XlModeler. Because the Mod-
elTable has already been constructed, we can start by clicking on Volatility Model in
the Excel ribbon bar:

A list with all the variables of the ModelTable appears in the right-hand frame. To
select variables that will enter your model, click on the variable name and then click
on the << button. There are three possible statuses for each variable (see the list of
statuses under the Selection frame): dependent variable (Y variable), regressor in the
conditional mean (Mean), or regressor in the conditional variance (Variance). In the
univariate module, only one Y variable per model is accepted. However one can include
several regressors in the conditional mean and the conditional variance equations. In
the example the Monday dummy is included in the conditional mean and the Friday

dummy in the conditional variance equation:
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Once the Next button is pressed, the Model Settings box automatically appears.
This box is to select the specification of the model: AR(FI)MA orders and the distribu-
tion for the mean equation; GARCH orders and type of GARCH model for the variance
equation. The default specification is for a GARCH(1,1) model with normal errors.
We are going to build an AR(1)-ARCH(1) model, in extended notation: ARMA(0,0)-
GARCH(1,1). This is specified as follows:

Starting Values are automatically chosen, but there is an option to enter them man-
ually, element by element. The automatic method is obviously the easiest to use and is
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recommended unless there are problems with convergence.

Next, the Estimate window proposes options on two important characteristics of
the model: the sample size and the estimation method:

Changing the end date is through a calendar control:

When the variable corresponding to the date is correctly formatted, the sample can
conveniently be fixed based on starting and ending date. The number of forecasts can
be also subtracted when out-of-sample forecasting is to be performed. For a fixed fre-
quency ModelTable, the method of sample selection is identical to regression models.

By default, robust standard errors are reported.

The Maximization Settings relate to the output and convergence tolerances of nu-
merical maximization procedures. All options are maintained from one build to the
next.

Click Next and the estimation procedure is launched if the automatic starting values
are used. Otherwise, an additional dialog box appears to modify the default starting
values.
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The AR(1)-ARCH(1) model that we estimated is:

yt = ρyt−1 + µ+ γ1Mondayt + εt,

εt = ztσt zt ∼ i.i.d. N [0, 1],

σ2
t = ω + γ2Fridayt + α1ε

2
t−1.

The output of the estimation is given in the XlModeler.Out sheet in Excel:

The estimation sample is: 2005-01-04 - 2018-12-31
The dependent variable is: ixic
Mean Equation: ARMA (1, 0) model.
1 regressor(s) in the conditional mean.
Variance Equation: GARCH (0, 1) model.
1 regressor(s) in the conditional variance.
Normal distribution.

Strong convergence using numerical derivatives
Log-likelihood = -5692.29
Please wait : Computing the Std Errors ...

Robust Standard Errors (Sandwich formula)
Coefficient Std.Error t-value t-prob

Cst(M) 0.068847 0.023222 2.965 0.0031
Monday (M) -0.028633 0.055363 -0.5172 0.6051
AR(1) -0.059025 0.072989 -0.8087 0.4188
Cst(V) 1.260808 0.11311 11.15 0.0000
Friday (V) -0.364409 0.12689 -2.872 0.0041
ARCH(Alpha1) 0.287649 0.057891 4.969 0.0000

No. Observations : 3522 No. Parameters : 6
Mean (Y) : 0.03197 Variance (Y) : 1.65341
Skewness (Y) : -0.28344 Kurtosis (Y) : 10.53423
Log Likelihood : -5692.286 Alpha[1]+Beta[1]: 0.28765

The sample mean of squared residuals was used to start recursion.
Positivity & stationarity constraints are not computed because there are
explanatory variables in the conditional variance equation.

Estimated Parameters Vector :
0.068847;-0.028633;-0.059025; 1.260808;-0.364409; 0.287654
Elapsed Time : 0.181 seconds (or 0.00301667 minutes).

Parameters labelled ‘(M)’ relate to the conditional mean while those labelled ‘(V)’
relate to the conditional variance equation. AR(1) and ARCH(Alpha1) correspond to ρ
and α1, respectively.

Surprisingly, the AR(1) coefficient ρ is not significantly different from 0 (we will
come back to this issue latter) while it was expected to be significantly negative. Inter-
estingly, the returns and volatility are, on average, found to be lower on Monday and
on Friday, respectively. Furthermore, the ARCH coefficient α1 is highly significant (re-
jecting the null of no ARCH effects) but does not capture the kurtosis (it is below 0.577,
with implied kurtosis of about 1.2). The log-likelihood value is −5703.476.
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4.5 Testing the volatility model

As a next step, it is desirable to test the adequacy of this ARCH model. Several options
to do so are thus available after the estimation of the model: the Forecast, Graphics

and Residual Graphics buttons, as well as under the More dropdown: Test, Graphic

Analysis, Forecast, Exclusion Restrictions, Linear Restrictions and Store Results:

The Graphics button shows the conditional mean and standard deviation, while the
residual graphics shows the squared residuals and the distribution of the standardized
residuals. The Graphic Analysis... option allows to plot different graphics:

Figure 4.4 plots the conditional variance (σ̂2
t ) as well as the histogram of the stan-

dardized residuals (ẑt = ε̂t
σ̂t

) obtained with the AR(1)-ARCH(1) model, together with
a kernel estimation of its unconditional distribution (solid line) and the N(0, 1) (dotted
line).

In most applications of GARCH models, the estimated volatility is plotted with-
out confidence bounds. However, XlModeler can provide in-sample confidence bands
for the conditional mean and conditional variance of univariate GARCH-type models,
based on the results of Blasques, Lasak, Koopman, and Lucas (2016). The bands are
obtained by simulation. As an illustration, 95% confidence bounds for the conditional
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Figure 4.4 Conditional variance of the NASDAQ and estimated unconditional den-
sity of the standardized residuals

mean and the conditional variance of our model is plotted in Figure 4.5, together with
the estimated conditional moments.
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Figure 4.5 In-sample confidence bounds
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4.5.1 Misspecification Tests

The Tests... option allows the user to run different tests but also to print the variance-
covariance matrix of the estimated parameters. We choose the first four options, as well
as the adjusted Pearson test, see the screen capture below the output.

TESTS :
---------
Information Criteria (to be minimized)
Akaike 3.235824 Shibata 3.235818
Schwarz 3.246330 Hannan-Quinn 3.239572
---------------

Normality Test

Statistic t-Test P-Value
Skewness -0.49758 12.061 1.7070e-33
Excess Kurtosis 7.7770 94.278 0.00000
Jarque-Bera 9021.1 .NaN 0.00000
---------------

Q-Statistics on Standardized Residuals
--> P-values adjusted by 1 degree(s) of freedom
Q( 5) = 8.20137 [0.0844742]
Q( 10) = 14.8156 [0.0961278]
Q( 20) = 38.8667 [0.0045958]**
Q( 50) = 96.0263 [0.0000687]**

H0 : No serial correlation
==> Accept H0 when prob. is High [Q < Chisq(lag)]

---------------

Q-Statistics on Squared Standardized Residuals
--> P-values adjusted by 1 degree(s) of freedom
Q( 5) = 320.105 [0.0000000]**
Q( 10) = 894.033 [0.0000000]**
Q( 20) = 1245.69 [0.0000000]**
Q( 50) = 2337.25 [0.0000000]**

H0 : No serial correlation
==> Accept H0 when prob. is High [Q < Chisq(lag)]

---------------

Adjusted Pearson Chi-square Goodness-of-fit test

# Cells(g) Statistic P-Value(g-1) P-Value(g-k-1)
40 421.8955 0.000000 0.000000
50 436.7734 0.000000 0.000000
60 447.6422 0.000000 0.000000

Rem.: k = 6 = # estimated parameters
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Without going too deeply into the analysis of these results, they suggest that the
model does not capture the dynamics of the NASDAQ returns.

The Q-statistics on standardized and squared standardized residuals, as well as the
adjusted Pearson Chi-square goodness-of-fit test (with different cell numbers) reject
the null hypothesis of a correct specification. This result is not very surprising. Early
empirical evidence has indeed shown that a high ARCH order has to be selected to catch
the dynamics of the conditional variance (thus involving the estimation of numerous
parameters). This will lead us to the GARCH model in the next chapter.

Note that the residual-based diagnostic test for conditional heteroskedasticity is dis-
abled when robust standard errors are used. So we can change to second derivatives.
This has quite an impact in the current model:

Second derivatives Robust Standard Errors
Coefficient Std.Error t-value Std.Error t-value

Cst(M) 0.068847 0.020785 3.312 0.023222 2.965
Monday (M) -0.028633 0.050560 -0.5663 0.055363 -0.5172
AR(1) -0.059025 0.027620 -2.137 0.072989 -0.8087
Cst(V) 1.260808 0.042754 29.49 0.11311 11.15
Friday (V) -0.364409 0.069532 -5.241 0.12689 -2.872
ARCH(Alpha1) 0.287649 0.030499 9.432 0.057891 4.969

Now we can compute the test for conditional heteroskedasticity, which shows that
its absence is rejected:
Residual-Based Diagnostic for Conditional Heteroskedasticity of Tse (2002)
RBD( 2) = 237.846 [0.0000000]
RBD( 5) = 376.854 [0.0000000]
RBD(10) = 987.233 [0.0000000]
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4.5.2 Forecasts

The main purpose of building and estimating a model with financial data is probably
to produce forecasts. With the Forecast option, XlModeler also provides forecasting
tools: forecasts of both the conditional mean and the conditional variance are available
as well as several forecast error measures.

The first parameter to specify is the horizon h of the h-step-ahead forecasts. The
default value is 10. Three options are available to:
1. print several forecasts error measures;
2. print the forecasts;
3. and make a graph of the forecasts.

Finally, graphical options are available for the standard error bands (error bands,
bars or fans).

Our model has regressors in the mean and the variance, and these would have to be
extended for out of sample forecasts (which is perfectly feasible, of course, as they are
just calendar variables). Instead, we re-estimate the model, holding back 40 observa-
tions for forecasting. This allows us to make 40 out-of-sample (or dynamic) forecasts
of the Nasdaq returns. Also set pre-observations to 100 and add error bands:
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Figure 4.6 10-step-ahead forecasts of the Nasdaq

Our AR(1)-ARCH(1) model produces forecasts as shown in Figure 4.6. The fore-
cast uncertainty bands are ±2σ̂t+h|t which gives a 95 % confidence interval (note that
the critical value 2 can be changed).

4.5.3 Exclusion Restrictions Dialog Box

The Exclusion Restrictions dialog box option allows you to select explanatory variables
and test whether they are jointly significant. A more general form is the test for linear
restrictions.

Mark all the variables you wish to include in the test in this Multiple-Selection List
box. G@RCH tests whether the selected variables can be deleted from the model.

4.5.4 Linear Restrictions Dialog Box

Tests for linear restrictions are specified in the form of a matrixR, and a vector r. These
are entered as one matrix [R : r] in the dialog. This is more general than testing for
exclusion restrictions.

4.5.5 Store Results

Finally, the coefficients, residuals, the conditional mean and the conditional variance
can be stored in a separate worksheet:
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4.5.6 Conclusions

While Engle (1982) is certainly the most important contribution in financial economet-
rics, the ARCH model is rarely used in practice due to its simplicity.

A useful generalization of ARCH is the GARCH model introduced by Bollerslev
(1986). This is also a weighted average of past squared residuals, but it has declining
weights that never go completely to zero. Even in its simplest form, as a GARCH(1,1),
it has proven surprisingly successful in predicting conditional variances.

We will estimate a GARCH model next. After that, the many other variants that are
available in XlModeler are introduced.

4.6 Other volatility models

4.6.1 GARCH Model

The GARCH(p, q) model of Bollerslev (1986) is:

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j . (4.10)

Alternatively, using lag polynomials α(L) = α1L+ α2L
2 + . . .+ αqL

q and β(L):

σ2
t = ω + α(L)ε2t + β(L)σ2

t .

If all the roots of |1− β(L)| = 0 lie outside the unit circle, we have:

σ2
t = ω [1− β(L)]

−1
+ α(L) [1− β(L)]

−1
ε2t , (4.11)

which may be seen as an ARCH(∞) process since the conditional variance linearly
depends on all previous squared residuals. In that case, the conditional variance of yt
can become larger than the unconditional variance, given by

σ2 ≡ E(ε2t ) =
ω

1− α(1)− β(1)
,
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if past realizations of ε2t are larger than σ2 (Palm, 1996).
Variance targeting for the GARCH model means replacing ω by σ2[1−α(1)−β(1)].
Bollerslev (1986) has shown that for a GARCH(1, 1) with normal innovations,

the kurtosis of y is 3[1 − (α1 + β1)2]/
[
1− (α1 + β1)2 − 2α2

1

]
> 3. The auto-

correlations ρi of ε2t have also been derived. For a stationary GARCH(1, 1), ρ1 =

α1 + [α2
1β1/(1 − 2α1β1 − β2

1)], and ρk = (α1 + β1)k−1ρ1, ∀k = 2, 3, . . . In other
words, the autocorrelations decline exponentially with a decay factor of α1 + β1.

Estimation of the AR(1)-GARCH(1,1) model for ixic, with second derivatives for
the variance, gives:

Maximum Likelihood Estimation (Std.Errors based on Second derivatives)
Coefficient Std.Error t-value t-prob

Cst(M) 0.075303 0.016758 4.493 0.0000
Monday (M) -0.012476 0.040121 -0.3109 0.7559
AR(1) -0.033023 0.018060 -1.828 0.0676
Cst(V) 0.042411 0.011859 3.576 0.0004
Friday (V) -0.054172 0.051253 -1.057 0.2906
ARCH(Alpha1) 0.098302 0.010287 9.556 0.0000
GARCH(Beta1) 0.878398 0.012116 72.50 0.0000

No. Observations : 3522 No. Parameters : 7
Mean (Y) : 0.03197 Variance (Y) : 1.65341
Skewness (Y) : -0.28344 Kurtosis (Y) : 10.53423
Log Likelihood : -5156.585 Alpha[1]+Beta[1]: 0.97650

The likelihood has improved from −5692.286 for the ARCH(1) model to
−5156.585 for the current model. This is a very large change for adding just a
single parameter. There is much less difference between robust and second-derivative
t-values (you can check this easily).

We report below the same five misspecification tests as for the ARCH(1) model.

Statistic t-Test P-Value
Skewness -0.51674 12.525 5.4592e-36
Excess Kurtosis 1.3589 16.473 5.7335e-61
Jarque-Bera 427.71 .NaN 1.3274e-93

Q-Statistics on Standardized Residuals
--> P-values adjusted by 1 degree(s) of freedom
Q( 5) = 2.93671 [0.5684726]
Q( 10) = 13.8178 [0.1289565]
Q( 20) = 28.1207 [0.0811332]
Q( 50) = 61.8798 [0.1024133]

Q-Statistics on Squared Standardized Residuals
--> P-values adjusted by 2 degree(s) of freedom
Q( 5) = 3.54361 [0.3151500]
Q( 10) = 17.2109 [0.0279860]*
Q( 20) = 32.3848 [0.0197889]*
Q( 50) = 53.7317 [0.2641310]

Adjusted Pearson Chi-square Goodness-of-fit test
# Cells(g) Statistic P-Value(g-1) P-Value(g-k-1)

40 172.0602 0.000000 0.000000
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50 186.2624 0.000000 0.000000
60 201.9182 0.000000 0.000000

Rem.: k = 7 = # estimated parameters

Residual-Based Diagnostic for Conditional Heteroskedasticity of Tse (2002)
RBD( 2) = 1.53567 [0.4640169]
RBD( 5) = 3.58472 [0.6106088]
RBD(10) = 17.2987 [0.0680111]

Unlike the ARCH(1) model, the Q-Statistics on standardized and squared stan-
dardized residuals, as well as the RBD test with various lag values suggest that the
GARCH(1, 1) does a good job in modelling the dynamics of the first two conditional
moments of the NASDAQ.

However, the adjusted Pearson Chi-square goodness-of-fit test (with different cell
numbers) still points out some misspecification of the overall conditional distribution.
The excess kurtosis is much reduced, but still significant.

Several authors have proposed to use a Student-t or GED distribution in combination
with a GARCH model to model the fat tails of the high-frequency financial time-series.
Furthermore, since the NASDAQ seems to be skewed, a skewed-Student distributions
might be justified.

4.6.2 EGARCH Model

The Exponential GARCH (EGARCH) model, originally introduced by Nelson (1991),
is re-expressed in Bollerslev and Mikkelsen (1996) as follows:

log σ2
t = ω + [1− β(L)]

−1
[1 + α(L)]g(zt−1).

The use of the log transformation of the conditional variance ensures that σ2
t is always

positive.
The value of g(zt) depends on several elements. Nelson (1991) notes that, “to

accommodate the asymmetric relation between stock returns and volatility changes (...)
the value of g(zt) must be a function of both the magnitude and the sign of zt”.1:

g(zt) ≡ γ1zt︸︷︷︸
sign effect

+ γ2[|zt| − E|zt|]︸ ︷︷ ︸
magnitude effect

E|zt| depends on the assumption made on the unconditional density of zt.
The output reported below corresponds to the ARMA(0,0)-EGARCH(1,1) with a

GED distribution. In this case the model with AR(1) failed to converge, so we dropped
that from the specification:

1Note that with the EGARCH parameterization of Bollerslev and Mikkelsen (1996), it is
possible to estimate an EGARCH (p, 0) since log σ2

t depends on g(zt−1), even when q = 0.
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Interestingly, both θ1 and θ2 are significant. Note that the degree of freedom of
the GED distribution is significantly lower than 2, confirming that the standardized
residuals are fat-tailed.
Maximum Likelihood Estimation (Std.Errors based on Second derivatives)

Coefficient Std.Error t-value t-prob
Cst(M) 0.072928 0.015298 4.767 0.0000
Monday (M) -0.021838 0.035502 -0.6151 0.5385
Cst(V) -0.203273 0.13809 -1.472 0.1411
Friday (V) -0.073880 0.067582 -1.093 0.2744
ARCH(Alpha1) -0.201055 0.11557 -1.740 0.0820
GARCH(Beta1) 0.975918 0.0047214 206.7 0.0000
EGARCH(Theta1) -0.193468 0.028299 -6.837 0.0000
EGARCH(Theta2) 0.141604 0.021003 6.742 0.0000
G.E.D.(DF) 1.370211 0.045900 29.85 0.0000

No. Observations : 3522 No. Parameters : 9
Mean (Y) : 0.03197 Variance (Y) : 1.65341
Skewness (Y) : -0.28344 Kurtosis (Y) : 10.53423
Log Likelihood : -5026.338

4.6.3 GJR Model

This popular model is proposed by Glosten, Jagannathan, and Runkle (1993):

σ2
t = ω +

q∑
i=1

(αiε
2
t−i + γiS

−
t−iε

2
t−i) +

p∑
j=1

βjσ
2
t−j ,

where S−t is a dummy variable that takes the value 1 when εt is negative and 0 other-
wise.

In this model, the impact of ε2t on the conditional variance σ2
t is different when εt is

positive or negative. An attractive feature of the GJR model is that the null hypothesis
of no leverage effect is easy to test: γ1 = . . . = γq = 0 implies that the news impact
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curve is symmetric, i.e. past positive shocks have the same impact on today’s volatility
as past negative shocks.

The output reported below suggests the presence of such an effect on the NASDAQ
since γ̂1 = 0.2 with a robust t-value of 7.1:

Robust Standard Errors (Sandwich formula)
Coefficient Std.Error t-value t-prob

Cst(M) 0.035811 0.017387 2.060 0.0395
Monday (M) -0.005590 0.040008 -0.1397 0.8889
AR(1) -0.027368 0.017660 -1.550 0.1213
Cst(V) 0.038964 0.014363 2.713 0.0067
Friday (V) -0.010132 0.068176 -0.1486 0.8819
ARCH(Alpha1) -0.018158 0.0081774 -2.220 0.0264
GARCH(Beta1) 0.886526 0.013427 66.02 0.0000
GJR(Gamma1) 0.198282 0.027992 7.083 0.0000

No. Observations : 3522 No. Parameters : 8
Mean (Y) : 0.03197 Variance (Y) : 1.65341
Skewness (Y) : -0.28344 Kurtosis (Y) : 10.53423
Log Likelihood : -5085.808

4.6.4 APARCH Model

The APARCH (p, q) has been introduced by Ding, Granger, and Engle (1993):

σδt = ω +

q∑
i=1

αi (|εt−i| − γiεt−i)δ +

p∑
j=1

βjσ
δ
t−j ,

where δ > 0 and −1 < γi < 1 (i = 1, ..., q). The parameter δ plays the role of a
Box-Cox transformation of σt while γi reflects the so-called leverage effect. Properties
of the APARCH model are studied in He and Teräsvirta (1999a), He and Teräsvirta
(1999b).

The APARCH includes seven other ARCH extensions as special cases:
• ARCH when δ = 2, γi = 0 (i = 1, . . . , p) and βj = 0 (j = 1, . . . , p).
• GARCH when δ = 2 and γi = 0 (i = 1, . . . , p).
• Taylor (1986)/Schwert (1990)’s GARCH when δ = 1, and γi = 0 (i = 1, . . . , p).
• GJR when δ = 2.
• TARCH, Zakoian (1994), when δ = 1.
• NARCH, Higgins and Bera (1992), when γi = 0 (i = 1, . . . , p) and βj = 0 (j =

1, . . . , p).
• Log-ARCH of Geweke (1986) and Pentula (1986), when δ → 0.

4.6.5 IGARCH Model

In many high-frequency time-series applications, the conditional variance estimated
using a GARCH(1, 1) process exhibits a strong persistence, that is α1 + β1 ≈ 1. The
IGARCH(p, q) model sets α(1) + β(1) = 1.
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4.6.6 RiskMetricsTM

In October 1994, the risk management group at J.P. Morgan released a technical docu-
ment describing its internal market risk management methodology (J.P.Morgan, 1996).
This methodology, called RiskMetricsTM soon became a standard in the market risk
measurement due to its simplicity.

The basic RiskMetricsTM model is an IGARCH(1,1) model where the ARCH and
GARCH coefficients are fixed:

σ2
t = ω + (1− λ)ε2t−1 + λσ2

t−1, (4.12)

where ω = 0 and λ is generally set to 0.94 with daily data and to 0.97 with weekly data.

To illustrate the need for flexible ARCH-type models, here is the output of the Box-
Pierce test on squared standardized residuals and the RBD test applied after the estima-
tion of the RiskMetrics model (including an AR(1) term and the two dummy variables).
Furthermore. the likelihood ratio test statistic is about 57 for three restrictions. There is
no doubt that the RiskMetrics specification is not appropriate.

Maximum Likelihood Estimation (Std.Errors based on Second derivatives)
Coefficient Std.Error t-value t-prob

Cst(M) 0.064194 0.017017 3.772 0.0002
Monday (M) -0.009739 0.041319 -0.2357 0.8137
AR(1) -0.032809 0.017562 -1.868 0.0618
Friday (V) 0.034130 0.0053469 6.383 0.0000
ARCH(Alpha1) 0.060000
GARCH(Beta1) 0.940000

No. Observations : 3522 No. Parameters : 4
Mean (Y) : 0.03197 Variance (Y) : 1.65341
Skewness (Y) : -0.28344 Kurtosis (Y) : 10.53423
Log Likelihood : -5184.951

Q-Statistics on Squared Standardized Residuals
--> P-values adjusted by 2 degree(s) of freedom
Q( 5) = 25.1700 [0.0000142]**
Q( 10) = 42.9937 [0.0000009]**
Q( 20) = 60.3281 [0.0000018]**
Q( 50) = 86.4578 [0.0005570]**

Adjusted Pearson Chi-square Goodness-of-fit test
# Cells(g) Statistic P-Value(g-1) P-Value(g-k-1)

40 179.9648 0.000000 0.000000
50 206.7053 0.000000 0.000000
60 223.2470 0.000000 0.000000

Residual-Based Diagnostic for Conditional Heteroskedasticity of Tse (2002)
RBD( 2) = 5.84439 [0.0538155]
RBD( 5) = 9.52249 [0.0899528]
RBD(10) = 21.6940 [0.0167415]
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4.6.7 Fractionally Integrated Models

Volatility tends to change quite slowly over time, and, as shown in Ding, Granger, and
Engle (1993) among others, the effects of a shock can take a considerable time to decay:
in their study of the daily S&P500 index, they find that the squared returns series has
positive autocorrelations over more than 10 years. Therefore the distinction between
stationary and unit root processes seems to be far too restrictive.

To mimic the behavior of the correlogram of the observed volatility, Baillie, Boller-
slev, and Mikkelsen (1996) (hereafter denoted BBM) introduce the Fractionally In-
tegrated GARCH (FIGARCH) model. The conditional variance of the FIGARCH
(p, d, q) is given by:

σ2
t = ω[1− β(L)]

−1︸ ︷︷ ︸
ω∗

+
{

1− [1− β(L)]
−1
φ(L)(1− L)d

}
︸ ︷︷ ︸

λ(L)

ε2t ,

or σ2
t = ω∗ +

∑∞
i=1 λiL

iε2t = ω∗ + λ(L)ε2t , with 0 ≤ d ≤ 1.
When estimating a FIGARCH (1, d, 1) model by QML on the NASDAQ

dataset (noticeably slower) we obtain a loglikelihood of −5158.790 in contrast to
a GARCH(1,1) value of −5156.585. So in this case the contribution of the fractional
integration is fairly small.

4.6.8 Spline-GARCH Model

Unlike most existing GARCH-type models, the Spline-GARCH model of Engle and
Rangel (2008) does not assume that the unconditional variance (when it exists) is con-
stant over time but allows it to change smoothly as a function of time.

Now (4.3) is extended by including a factor τt as follows:

εt = τtstzt. (4.13)

The factor τt is an exponential quadratic spline function with k knots and is multiplied
by a GARCH(p, q) component. Using a GARCH(1,1):

s2t = 1− (α1 + β1) + α1(εt−1/τt−1)2 + β1s
2
t−1, (4.14)

τ2t = ω exp

(
δ0t+

k∑
i=1

δi[(t− ti−1)+]2

)
, (4.15)

where ω, α1, β1 and δi for i = 0, 1, . . . , k are parameters, x+ = x if x > 0 and 0

otherwise, and {t0 = 0, t1, . . . , tk−1} are time indices partitioning the time span into k
equally spaced intervals. The specification of s2t may be chosen among other available
GARCH equations provided that E(st) = 1 (which implies an identification constraint
for the intercept).

To illustrate, we estimate the AR(1)-Spline-GARCH(1, 1) on the returns of the Nas-
daq index.
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The number of knots is set to 2 (this can be selected by minimixing the SC infor-
mation criterion).

Robust Standard Errors (Sandwich formula)
Coefficient Std.Error t-value t-prob

Cst(M) 0.074977 0.017115 4.381 0.0000
Monday (M) -0.012732 0.039268 -0.3242 0.7458
AR(1) -0.032042 0.017620 -1.818 0.0691
Cst(V) 0.672532 0.13954 4.820 0.0000
Friday (V) -0.058664 0.074794 -0.7843 0.4329
Spline_0 (V) 7.159803 1.7730 4.038 0.0001
Spline_1 (V) -11.131828 2.9067 -3.830 0.0001
Spline_2 (V) 18.966135 6.0312 3.145 0.0017
ARCH(Alpha1) 0.099659 0.012779 7.799 0.0000
GARCH(Beta1) 0.866780 0.015749 55.04 0.0000

No. Observations : 3522 No. Parameters : 10
Mean (Y) : 0.03197 Variance (Y) : 1.65341
Skewness (Y) : -0.28344 Kurtosis (Y) : 10.53423
Log Likelihood : -5147.146 Alpha[1]+Beta[1]: 0.96644

Figure 4.7 displays the daily returns of the Nasdaq, the estimated spline component
τ̂2t , which clearly reflects the increase of volatility at the end of the sample, and the
conditional variance σ̂2

t .

4.6.9 Generalized Autoregressive Score (GAS) Models

It is well known that financial series occasionally exhibit large changes, also known as
jumps. The impact of jumps has been modelled assuming a Poisson or a Bernoulli jump
distribution which, when combined with a normal distribution for the Brownian motion
part, leads to Poisson or Bernoulli mixtures of distributions for financial returns. Alter-
natively some studies assume fat tail distributions such as the (skewed) student-t or the
generalized error distribution to account for the occurrence of large changes in returns.
Several authors have shown that these jumps affect future volatility less than what stan-
dard volatility models would predict. Many volatility models, such as GARCH, are
based on the assumption that each return observation has the same relative impact on
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Figure 4.7 Daily returns of the Nasdaq, conditional variance, and spline component
for a spline-GARCH with two knots

future volatility, regardless of the magnitude of the return. This assumption is at odds
with an increasing body of evidence indicating that the largest return observations have
a relatively smaller effect on future volatility than smaller shocks.

To overcome this problem, Harvey and Chakravarty (2008) and Creal, Koopman,
and Lucas (2012) independently proposed a novel way to deal with large returns in a
GARCH context. Their models rely on a potentially non-normal distribution for the
innovations zt in (4.3) and a GARCH-type equation for the conditional variance de-
rived from the conditional score of the assumed distribution with respect to the second
moment.

Start by rewriting the GARCH(1,1) model as:

σ2
t = ω + α1 z

2
t−1σ

2
t−1︸ ︷︷ ︸

ε2t−1

+β1σ
2
t−1

or equivalently

σ2
t = ω + α1 (z2t−1 − 1)︸ ︷︷ ︸

ut−1

σ2
t−1 + (α1 + β1)︸ ︷︷ ︸

φ1

σ2
t−1. (4.16)

The specification of the GAS(1,1) model of Harvey and Chakravarty (2008) combined
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with a normal, Student-t, GED or Skewed-Student distribution defines ut in (4.16):

ut = z2t − 1 if zt ∼ N(0, 1); (4.17)

ut =
(ν + 1)z2t
ν − 2 + z2t

− 1 if zt ∼ t(0, 1, ν); (4.18)

ut = 0.5ν|zt|ν/λνν − 1 if zt ∼ GED(0, 1, ν); (4.19)

ut =
(ν + 1)ztz

∗
t

(ν − 2)gtξIt
− 1 if zt ∼ SKST (0, 1, ξ, ν). (4.20)

Harvey and Chakravarty (2008) call the above GAS model with a T distribution ‘Beta-
t-GARCH’ because, for this distribution, (ut+1)/(ν+1) has a Beta distribution. Note
that the normal GARCH(1,1) is identical to the normal GAS(1,1) model.

As example consider the stock price of Bristol-Myers Squibb (BMY). Daily returns
in % of BMY (on the period 1999-2008) are plotted in the top panel of Figure 4.8.
Bristol-Myers Squibb, one of the largest Pharmaceutical companies in the US, with-
drew a New Drug Application for a drug called Omapatrilat on April 19, 2000. This
was generally seen as a huge blow to the company as it was meant to be the company’s
next blockbuster. The product was expected to be a topseller amongst all pharmaceuti-
cals. The market reacted heavily with a 30% loss on a single day. This was a once-off
event which influenced future profitability, but not the further functioning of the com-
pany. The market immediately adapted to the new information and the stock’s returns
remained calm afterwards.

The bottom panel of Figure 4.8 plots the estimated conditional standard deviation
of BMY. The dotted line corresponds to σ̂t obtained for a GARCH(1,1) with a skewed-
Student distribution, whereas the solid blue line is for the equivaleny GAS(1,1) model.
The difference in response to the large jump is striking.

The data set is supplied as BMY.xlsx, so you should be able to replicate the follow-
ing estimates:
Robust Standard Errors (Sandwich formula)

--------- GAS(1,1) --------- ---------- GARCH(1.1) ------
Coefficient Std.Er t-value Coefficient Std.Er t-value

Cst(M) -0.017871 0.027 -0.656 -0.015598 0.027 -0.572
Cst(V) 0.018856 0.010 1.916 0.021660 0.011 1.977
GAS(Alpha1) 0.094193 0.020 4.683 -
GAS(Phi1) 0.996115 0.005 215.4 -
ARCH(Alpha1) - 0.073753 0.020 3.643
GARCH(Beta1) - 0.922380 0.021 43.46
Asymmetry 0.011241 0.028 0.398 0.016231 0.028 0.583
Tail 7.458755 1.136 6.565 7.206739 1.118 6.444

No. Observations : 2489 No. Observations : 2489
Log Likelihood : -4602.530 Log Likelihood : -4617.036
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Figure 4.8 Daily returns in % of Bristol-Myers Squibb (BMY) and estimated condi-
tional standard deviation
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